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ABSTRACT 

Technically, land-use change and forestry (LUCF) projects have the potential of contributing 
significantly to mitigation of global warming, but many such projects may not be economically 
attractive at current estimates of carbon prices. Payments for greenhouse-gas emission offsets can make 
some projects attractive and hence stimulate the development of the forestry sector. However, the costs 
of participating in the carbon market may be too high to make it worthwhile. Forest carbon is in a sense 
a new commodity that must be measured to acceptable standards for the commodity to exist.   This will 
require credible carbon-monitoring programs be in place. Carbon monitoring is subject to both fixed 
and variable costs and these will affect the profitability of projects - particularly small projects, those 
involving geographically dispersed parcels and those with high levels of heterogeneity. Monitoring 
schemes need to be designed to maximize efficiency. These issues are discussed at a general level and 
illustrated numerically based on a model of an Acacia mangium plantation in South Sumatra, 
Indonesia. Using plausible assumptions we show that a project of this type can be economically 
attractive under a range of conditions and with variable monitoring costs as high as $1,500 per 
sampling plot, provided that the project is large enough to absorb fixed costs. Under the assumed fixed-
monitoring costs and a discount rate of 15%, a 500-hectare project is shown not to be profitable from a 
carbon-sequestration standpoint, as a landholder would be better off not entering the carbon market and 
relying only on timber sales.  
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1. INTRODUCTION 

Concerns over global warming and the Kyoto Protocol have sparked much attention 
on the possibility of selling carbon-sequestration services in international markets. To 
be eligible to participate in carbon trading, land-use change and forestry (LUCF) 
projects will need to monitor carbon stocks over time in the project area, and these 
estimates will have to be certified by an authorised agency. If carbon monitoring is 
too costly, certain LUCF projects may not be attractive from an economic point of 
view. In other words, at high monitoring costs, the monetary incentives necessary for 
LUCF projects to participate in carbon markets may not exist.   

Carbon monitoring costs can be classified into three types: (1) initial ‘establishment’ 
costs; (2) annual fixed costs, independent of the number of plots sampled; and (3) 
annual variable costs (the cost of monitoring each sampling plot). These costs will 
affect the profitability of projects in different ways. The situation is further 
complicated by the uncertainty regarding the accuracy of the carbon sequestration 
claimed by the project, which is based on statistical analysis of a given number of 
permanent sampling plots. Small projects, those involving geographically dispersed 
parcels and those with high levels of heterogeneity will be more expensive to monitor. 

In this paper we use a simple model of an Acacia mangium plantation in Indonesia to 
illustrate the problems discussed above, and to answer two questions: (1) How do 
monitoring costs influence the incentives available to LUCF projects as carbon sinks?  
(2) How is the optimal management of LUCF projects (in terms of cycle length and 
sampling intensity) affected by variability, project size, discount rates and variable 
monitoring costs? The paper concludes with a discussion of the implications of our 
findings for project design.  

2. CARBON POOLS AND MONITORING TECHNIQUES 

The recommended approach to measuring carbon sequestration in LUCF projects is to 
use permanent sampling plots to monitor both the baseline and the project. Well 
established statistical techniques can be used to determine the sampling design and 
intensity required to achieve a given level of precision (MacDicken, 1997). For both 
small-scale and large projects, random sub samples of permanent sampling plots can 
be monitored each year. Larger projects may also benefit from imaging techniques 
and remote sensing based either on satellites or low-flying aeroplanes (Brown, 2001).  

MacDicken (1997) recommends modelling as a convenient way of estimating the size 
of carbon pools in periods between inventories and to establish baselines.  Accounting 
for carbon in sequestration projects involves measuring four pools (Hamburg, 2000): 
aboveground living biomass, belowground living biomass, soil and necromass. 

Not all pools need to be measured at the same level of precision or at the same 
frequency during the life of the project. In the initial inventory the relevant carbon 
pools must be measured, but in subsequent monitoring only selected pools need to be 
measured, depending on the type of project (Brown, 2001). The level of precision to 
which each pool can be measured at reasonable cost is presented by (Hamburg, 2000). 



 3 

2.1 Aboveground living biomass 

There are standard, well accepted methods of measuring aboveground biomass carbon 
in forested areas. The simplest procedure consists of measuring a sample of trees and 
using allometric equations to estimate biomass. Allometric equations relate tree 
biomass (B) to quantities (Vi) that can be measured by non-destructive means. 
Allometric equations have the general form (Ketterings et al., 2001): 

( )nVVVfB ,...,, 21=  (1) 

The independent variables (Vi) may include diameter at breast height, height and 
wood density. Experience with generic equations has shown that diameter explains 
more than 95% of the variation in tree biomass (Brown, 2001). Brown (Brown, 1997) 
has published allometric equations for tropical environments, and presents wood 
density values for a large number of species. The assumption that 50% biomass (on a 
dry weight basis) is carbon is well accepted (Brown, 2001; Hamburg, 2000), so it is 
straightforward to convert measured biomass to carbon units. 

Allometric methods have been shown to be robust among species and genera, and can 
predict biomass of closed-canopy forest to within ±10% (Hamburg, 2000). In some 
cases it may be necessary to use destructive techniques to estimate allometric 
equations for a project (the techniques used to undertake these measurements are 
explained by Brown, 1997), but often, parameter values available in the literature can 
provide acceptable levels of precision. Hence the main expense would be costs 
associated with field measurement of trees and the analysis of data. 

2.2 Belowground living biomass 

Belowground living biomass consists mostly of roots. This is an important pool that 
can represent up to 40% of total biomass (Cairns et al., 1997). It can be very 
expensive to sample directly and requires destructive techniques (Brown, 2001). This 
pool can be estimated with some accuracy, but at lower precision than aboveground 
biomass.  

The simplest approach to estimating belowground biomass is to apply a constant 
root/shoot ratio (R/S ratio). Although the R/S ratio varies with site characteristics and 
stand age, a range of R/S ratios can be obtained from the scientific literature 
(Hamburg, 2000). To avoid measuring roots, a conservative approach recommended 
by MacDicken (1997) is to estimate root biomass at no less than 10% or 15% of 
aboveground biomass. Hamburg (2000) recommends a default R/S ratio for 
regrowing forests of 0.15 in temperate ecosystems and 0.1 in tropical ecosystems. 
Although ratios as high as 0.4 have been measured in temperate forests, the author 
recommends erring on the side of caution, to avoid the possibility of crediting non-
existent carbon. 

2.3 Soil carbon 

Soil carbon can also be expensive to measure directly, particularly because of the 
strong influence that soil characteristics have on carbon dynamics, so modelling may 
have an important role here. Hamburg (2000) argues that by using a few generalized 
principles it should be feasible to measure soil carbon to an acceptable level of 
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accuracy for biological mitigation projects. Hamburg recommends that the soil carbon 
be measured to at least 1 m depth, and that measurements of soil carbon and bulk 
density be taken from the same sample. MacDicken (1997) suggests measurement 
only of changes in the rooting zone, where most soil carbon changes due to human 
activity are likely to take place. 

Fortunately, for projects that are known to have non-decreasing effects on soil carbon, 
it may not be necessary to measure soil carbon after the baseline is established. Rates 
of soil oxidation (a process that releases CO2) under different land uses are available 
in the literature (Brown, 2001). As a general rule, reforestation projects in agricultural 
or degraded land would tend to increase soil carbon. If the marginal cost of measuring 
this carbon pool is greater than the marginal benefit of the carbon credits obtained, the 
project developer would be better off not measuring this pool. 

The Alternatives to Slash-and-Burn (ASB) group have argued that most of the 
sequestration potential in the humid tropics is aboveground rather than in the soil. In 
tree-based systems planted to replace degraded pastures, they found that the time-
averaged carbon stock increased by 50 Mg ha-1 in 20 years, whereas the carbon stock 
in soil increased by 5-15 Mg ha-1 (Palm et al., 1999; Tomich et al., 1998). 

Modelling can complement monitoring techniques (Brown, 2001). This can be 
particularly useful to forecast slow changes in soil carbon pools. An example of this 
technique, using a complex model, is presented by (Wise and Cacho, 2002). 

2.4 Necromass 

The necromass pool includes the carbon contained in dead trees, leaves, branches and 
other vegetation. Annual leaf litter inputs do not need to be accounted as part of the 
necromass pool, since this input is balanced by decomposition losses within the soil 
and the net effect is included in the measurement of the soil pool (Hamburg, 2000). 

The amount of necromass varies considerably with forest type and disturbance 
history, and estimating this component accurately can be very time consuming and 
subject to high uncertainty. Fortunately this component can be ignored (Hamburg, 
2000) if we are confident that it will not decrease as a result of the project. In contrast, 
(Brown, 2001) states that dead wood, both lying and standing, is an important carbon 
pool in forests and should be measured. According to her, methods for this component 
have been tested and require no more effort than measuring living biomass. 

3. METHODS 

3.1 Economic model 

This section presents a general economic model of a forest cycle starting with bare 
ground and including carbon sequestration payments. The model is based on the 
“ideal” carbon payment method described by Cacho et al., (2002). Under this method, 
carbon payments are made at the end of the year for the amount of CO2 sequestered 
during that year, and any CO2 released by the project causes a liability. This method is 
compatible with the temporary CER concept proposed by Colombia (Blanco and 
Fornier, 2000) and the rental carbon scheme proposed by (Sedjo et al., 2001). 
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The long-term profit obtained from a forestry cycle of T years duration is: 

[ ]∑
=
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where NPVT is the net present value ($ ha-1) of profits obtained by the landholder 
when harvesting in year T ; vT is the volume of wood harvested (m3); pv is the price of 
timber net of harvesting costs ($ m-3); ∆Ct is the reliable minimum estimate (RME) of 
carbon sequestered during year t (Mg ha-1yr-1); pC is the price of carbon ($ Mg-1), mt 
are annual monitoring costs; E is the cost of establishing the plantation ($ ha-1) and δ 
is the discount factor (1+r) for the discount rate r. Ct is the “stock” of credited carbon 
in a given year, i.e. the total amount of carbon credited from the start of the project up 
to year t. 

The first term on the right-hand side of equation (1) is the present value of profits 
obtained from timber sales, the second term is the present value of the stream of 
benefits obtained from carbon sequestration payments, and the last term is the cost of 
redeeming carbon-credit payments upon harvest.  

The establishment cost (E) is the cost incurred in preparing the land, planting and 
maintaining the trees, and establishing monitoring capability; this may include any 
fees paid to register the project for C payments, tools and equipment purchased, as 
well as the cost of training project personnel (or landholders) to measure carbon 
stocks. 

The optimal rotation can be obtained by finding the cycle length (T) that maximizes 
the value of equation (1). However, a single-cycle model ignores the opportunity cost 
of the land in the future, after the trees are harvested. This is well studied in the 
forestry economics literature including most textbooks of resource economics.  

Both, the volume of timber available for harvest (vT), and the amount of carbon at any 
time (Ct) depends on the type of trees, their growth rate, and the way in which the 
forest is managed. The path of these variables through time can be simulated by 
existing forest growth and soil carbon models, or can be approximated by single-
equation nonlinear models. In this paper we follow both approaches, as explained in 
the following section. 

3.2 Representative production system 

The economic performance of a plantation, as described in equation (1), is driven by 
the growth rate of the forest and the type of forest, which will determine carbon 
sequestration rates (∆Ct) and volume (vt) at any time during a forestry cycle. The rate 
of carbon sequestration in any given year is calculated by the difference in the stock 
of carbon between the end of the current year and the end of the previous year: 

1−−=∆ ttt CCC  (2) 

And the total stock of carbon is the sum of carbon contained in the four pools 
discussed in Section 2: aboveground biomass (bt), soil (CSt), underground biomass 
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(CUt) and necromass (CNt). Assuming that 50% of aboveground biomass (dry weight) 
is organic carbon, we have: 

ttttt CNCUCSbC +++⋅= 5.0  (3) 

Accumulation of aboveground biomass is well described by the Chapman-Richards 
function (Venn et al., 2000):  

( )[ ]µϕθ tbt ⋅−−= exp1  (4) 
 

where θ, ϕ and µ are parameters specific to a given species, site and management. θ is 
the maximum woody biomass (Mg DM ha-1) in the mature forest and ϕ and µ 
determine the slope and shape of the function. These parameters were adjusted to 
represent an Acacia mangium plantation in south Sumatra, Indonesia (Table 1). In 
estimating parameters values we assumed that biomass in year 9 is 190 Mg ha-1 
(Hardiyanto et al., 2000) and constrained the maximum volume of a mature plantation 
(θ ) to be 400 Mg DM ha-1. 

The relationship between volume and biomass was based on two simple assumptions: 
70% of the woody biomass is merchantable wood, and the density of A. mangium 
wood is 0.56 Mg m-3. So volume at any time was calculated from biomass as: 

56.0
7.0 t

t
bv ⋅

=  (5) 

This value was inserted in equation (1) to estimate the profit from selling timber.  

Fluctuations in soil-carbon stocks as a result of land-use changes are sensitive to 
factors such as previous land-use (which determines initial soil-carbon stock), soil 
type and soil fertility, management variables (soil-tillage, fertilizing, thinning and 
harvesting) and species selection (Polglase et al., 2000). The sign and magnitude of 
these fluctuations are often not known because of the high costs and long time periods 
required to accurately measure soil carbon changes within and across sites, and over 
an entire project lifespan. Also, changes in soil carbon can be difficult to detect 
because of the generally high background levels and natural variability of the soils 
within which they occur (Blair et al., 1995). Therefore, simulation of soil-carbon 
changes under tree plantations using biophysical modelling can be a valuable tool. 
The biophysical process model CenW (Kirschbaum, 1999) was calibrated for an A. 
mangium plantation in Indonesia to estimate soil carbon accumulation. 

CenW simulates the effects of changes in environmental factors such as CO2 
concentration, temperature and rainfall on biophysical processes in tree plantations 
such as biomass accumulation (photosynthesis), water use, soil carbon storage and 
nutrient cycling in soil organic matter. It does this by simulating fluxes of carbon, 
nutrients and water between and within the soil, the plant components and the 
atmosphere on a daily time step. The A. mangium plantation simulated for this study 
resembles that reported by Hardiyanto et al. (2000, p. 45). However, the initial soil 
nitrogen and soil carbon values used in calibrating CenW were lower than the 6.6 Mg 
N ha-1 and 76.7 Mg C ha-1 given by Hardiyanto et al. (2000, p. 45), this was done to 
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obtain more conservative estimates of land productivity, reflecting grasslands 
available for reforestation. 

The model described so far assumes that carbon stocks are known with certainty, 
which is equivalent to assuming that the coefficient of variation is 0. However, given 
the variability between trees and between areas of a plantation, carbon stocks can only 
be measured within a certain confidence level. The higher the confidence required, the 
higher the costs of monitoring, this is discussed in the next section.  

3.3 Monitoring costs 

The annual monitoring costs (mt) depend largely on the number and diversity of trees 
in the project, as well as on the diversity of the environment; because the precision 
achieved by a given sampling strategy is affected by these factors. For the purpose of 
this paper carbon credits are measured in terms of the Reliable Minimum Estimate 
(RME) as defined by MacDicken (1997): 

n
sbRME t

tt ⋅−= df0.05,t  (6) 

where tb  is the estimate of the mean aboveground biomass in the plantation  (Mg ha-

1), t0.05,df is the one-tailed t-statistic for α=0.05 with degrees of freedom (df) equal to 
n-1; n is the number of sample plots used to estimate standing biomass and st is the 
standard deviation.  

The mean biomass was estimated with equation (4) and the effect of variability on 
monitoring costs was evaluated by testing different coefficients of variation (cv); 
substituting the relationship: tt bcvs ⋅= into equation (6). 

Annual monitoring costs have a fixed (αm) and a variable (βm) component. The 
variable component varies in direct proportion with the number of plots sampled (n), 
while the fixed component is independent of n. So monitoring costs are estimated as: 

A
nm mm

t
⋅+

=
βα  (7) 

where A is the area of the project (ha). The value of αm includes the cost of 
transporting the crew into the project area, βm includes the cost of keeping the 
monitoring-crew on the ground (salaries and per-diems), as well as consumables, 
transportation between plots and data entry and analysis costs.  

As mentioned earlier, establishment costs (E) include once-off costs of monitoring, 
such as purchasing tools, setting up a database, training of project field workers, 
purchase of remote sensing, design of sampling forms etc. (MacDicken, 1997).  

3.4 Base-case assumptions 

The assumptions used in the base runs of the model are presented in Table 1. Note 
that the establishment costs were divided into two components: a per-hectare cost of 
$600 to prepare the land and plant and fertilise the trees, and a fixed cost of enabling 
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the project for C trading of $10,000. The latter cost would include any fees payable to 
register the project for C trading, plus the cost of estimating the baseline and 
designing the sampling strategy. 

Table 1. Parameter values and assumptions. 
Parameter/ 
Variable Value Description 
θ 400 maximum aboveground biomass (Mg ha-1) 
ϕ 0.109 growth parameter 
µ 3.333 growth parameter 
C0 42.22 initial soil carbon level (Mg C ha-1) 
N0 4.48 initial soil nitrogen level (Mg N ha-1) 
cv 0.4, 0.8 coefficient of variation 
pC 20 price of carbon ($ Mg-1) 
pv 30 price of wood ($ m-3) 
r 5, 15 discount rate (%) 
A 1,000 area of project (ha) 
αm 5,000 annual fixed costs of monitoring ($) 
βm 500 variable cost of monitoring ($ per plot) 
E FC + FM / A establishment cost ($ ha-1) 
FM 10,000 cost of enabling C-monitoring and trading ($) 
FC 600 establishment cost ($/ha) 
  

In the economic evaluation below, only aboveground biomass will be considered; so 
the last three terms of equation (3) will be set to zero. The implications of this 
simplifying assumption are discussed later and do not affect the general conclusions 
of the paper. 

4. RESULTS 

4.1 Base simulations 

The time-trajectory of the simulated changes in total soil carbon (to a depth of 
100cm), under an A. mangium plantation over a 40-year rotation, is presented in 
Figure 1. 

The initial soil-carbon value of 42.2 Mg C ha-1 seen in Figure 1 falls within the 
expected range of 10 to 105 Mg C ha-1 for soils under a range of land uses in Sumatra, 
Indonesian (Roshetko et al., 2002; van Noordwijk et al., 2001). Assuming the 
previous land use was Imperata grassland, which typically has a soil-carbon level of 
between 30 Mg C ha-1 (Woomer et al., 2000, p. 107) and 60 Mg C ha-1 (van 
Noordwijk et al., 2001), this initial soil carbon value is plausible.  
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Figure 1. Trajectory of total soil carbon to one meter depth in a simulated A. mangium plantation in 

South Sumatra. 

The simulated trajectory of carbon in aboveground biomass is presented in Figure 2. 
The known mean C stock (actual) is compared with the amount that would be eligible 
under the reliable minimum estimate (RME) for given coefficients of variation (cv = 
0.4 or 0.8) and number of plots sampled (n = 10 or 40). The greater the number of 
plots sampled, the closer the RME is to the actual mean, and hence the more CERs 
can be sold. As the cv increases, a larger number of plots is required to achieve a 
given level of precision (compare Figures 2A and 2B). 

0

50

100

150

200

0 10 20 30 40
0

50

100

150

200

0 10 20 30 40

Year Year

A
bo

ve
gr

ou
nd

 c
ar

bo
n 

M
g 

ha
-1

(A) CV=0.4 (B) CV=0.8
actual

RME (40)

RME (10)

actual
RME (40)

RME (10)

 
Figure 2. Predicted aboveground-biomass carbon in simulated A. mangium plantation in South 

Sumatra. Two coefficients of variation (CV = 0.4 or 0.8) and two sampling intensities (10 or 
40 plots). RME(n) is the reliable minimum estimate when n plots are sampled. The actual 
carbon stock is the same for both charts.  

The simulations described above (Fig 2) were repeated for values of n ranging 
between 2 and 30 and for two values of cv; the amount of eligible CERs for each 
sampling strategy was then calculated as the time-averaged RME of C sequestered 
over the 40 years simulated (Fig 3).  There is a sharp increase in the number of CERs 
obtained as the number of plots increases between 2 and about 10. Beyond this point, 
additional gains in CERs with further increases in the number of sampling plots 
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becomes quite small and is almost flat beyond 20 plots. Fig 3 illustrates very clearly 
the relationship between precision of measurement and the amount of C credits that 
can be claimed, but it says nothing about the optimal sampling strategy. The optimal 
sampling strategy will be affected by the cycle length, prices, costs and discount rate. 
This is explained below. 
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Figure 3. The relationship between number of permanent sample plots and the amount of CERs 
claimed (based on RME) in simulated A. mangium plantation in South Sumatra; two 
coefficients of variation (CV) are shown. 

The NPV of profits obtained over a series of A. mangium rotations is illustrated in Fig 
4; a fixed number of sampling plots (10) was used to obtain these figures. The year at 
which NPV reaches a maximum is the optimal rotation length (indicated by arrows in 
Fig 4). The optimal rotation length decreases from 16 years when the discount rate is 
5% (Fig 4A), to 12 years when the discount rate is 15% (Fig 4B). As with all long-
term investments, the actual profitability of the plantation is very sensitive to the 
discount rate, decreasing from about $6,000 ha-1 at 5% to about $600 ha-1 at 15%. 
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Figure 4. Trajectories of net present value (NPV) of simulated A. mangium plantation in South 
Sumatra; two discount rates (r) are shown. In each chart the top line represents a coefficient of 
variation (CV) of 0.4 and the bottom line a CV of 0.8. Arrows show the optimal cycle length. 
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Fig 4 illustrates how the optimal cycle length can be estimated for any given 
combination of discount rate, coefficient of variation and number of plots sampled. 
The next step is to estimate the optimal number of sample plots to use in a project. 
This can be accomplished by performing the analysis illustrated above for a range of 
values of n and selecting the maximum NPV (Fig 5).  
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Figure 5. The net present value (NPV) of simulated A. mangium plantation in South Sumatra at 

different sampling intensities; two discount rates (r) and two coefficients of variation (CV) are 
shown.  Each point in these lines was taken from the optimal cycle length for the given 
number of plots (see Fig. 4). The arrows indicate the optimal sample size. 

For the given assumptions regarding prices and costs, at a discount rate of 5%, it is 
optimal to establish 7 permanent sampling plots if cv is 0.4 or 11 plots if cv is 0.8 (Fig 
5A), as the discount rate increases to 15%, the number of sampling plots increases to 
9 and 13 for cvs of 0.4 and 0.8 respectively (Fig. 5B). This is because, with higher 
discount rates, the value of carbon increases relative to the value of timber, which is 
harvested far into the future and heavily discounted, so more effort is put into 
measuring carbon. 

4.2 Sensitivity analysis 

The previous section presented results under base-case assumptions and illustrated 
how the optimal management of a plantation can be determined, in terms of cycle 
length and number of permanent sample plots, to maximise the net present value of a 
forestry cycle managed for both timber and carbon credits. In this section, a 
sensitivity analysis is performed on three critical variables: the cost of carbon 
monitoring (βm in $ per plot), the coefficient of variation (cv) and the discount rate (r). 
The optimal results are shown in Table 2 for a number of combinations of these 
variables, with a project of 1,000 ha.  

There are several obvious trends in Table 2. First, the maximum NPV decreases as r, 
cv and/or βm increase, and NPV is most sensitive to the discount rate. Second, the 
optimal cycle length decreases as r increases, but is generally not affected by cv or βm, 
with one exception to be discussed later. Third, the optimal number of sampling plots 
is directly related to r and cv, but inversely related to βm. Fourth, the number of CERs 
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obtained by the project decreases as r, cv or βm increase, and the average cost of 
carbon monitoring varies inversely with the values of these variables.  

Table 2. Results of sensitivity analysis with a project of 1,000 ha in size. 
 Discount rate  
Sampling 5%  15% 
cost (βm) Coefficient of variation  Coefficient of variation 

($ per plot) 0.4 0.8  0.4 0.8 
 NPV of multiple cycle ($ ha-1) 

100 5,958 5,895  631 607 
500 5,870 5,762  598 556 

1,000 5,806 5,671  574 522 
1,500 5,756 5,612  556 496 

 Optimal cycle (years) 
100 16 16  12 12 
500 16 16  12 12 

1,000 16 16  12 12 
1,500 16 15  12 12 

 Optimal no. of sample plots 
100 19 30  22 30 
500 8 11  9 13 

1,000 5 8  6 9 
1,500 5 0  5 7 

 Time-averaged CERs sold (Mg ha-1) 
100 38.0 35.0  23.7 21.6 
500 34.6 28.9  21.7 18.7 

1,000 31.4 25.9  20.3 16.8 
1,500 31.4 0.0  19.4 15.1 

 Average Cost per CER ($ Mg-1) 
100 0.45 0.51  0.73 0.83 
500 0.55 0.71  0.90 1.15 

1,000 0.64 0.89  1.04 1.43 
1,500 0.72 na  1.16 1.69 

The reasons for the trends observed in Table 2 are mostly obvious, but there are a few 
cases that merit further discussion. In one case, it is better not to participate in carbon 
trading (optimal n is 0), this happens at the low discount rate (r = 5%), high 
variability (cv = 0.8) and high sampling cost (βm is $1,500 per plot per year). This 
means that, given the low discount rate, it is better to harvest one year earlier (year 15 
instead of 16) and obtain only the net benefits of selling timber, rather than delaying 
the harvest and paying a higher price per plot to measure carbon. In other words, the 
higher cv would require more plots to be sampled and this is not worth it.   

The average cost per CER in terms of monitoring (the sum of fixed and variable costs 
divided by the number of CERs claimed), increases as cv and βm increase (see last 
panel of Table 2), the reasons for this are that, either more sampling plots are required 
to reach a given level of accuracy (at high cv) or each plot is more expensive to 
sample (at high βm). The reason for an increase in average cost of monitoring ($ CER-

1) with an increase in the discount rate is not immediately obvious. This result is 
caused by the larger number of sampling plots required; for example, with βm = $500 
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and r =5%, the optimal values of n are 8 and 11 with cv= 0.4 and 0.8 respectively, 
these numbers increase to 9 and 13 as r increases to 15%. The other factor affecting 
this result is that the number of CERs obtained with a high r (15%) is lower than with 
a low r (5%) because of the shorter cycle length (12 vs. 16 years). So the combination 
of a larger number of plots and a smaller number of CERs, results in a higher cost per 
CER ($ Mg-1) as the discount rate increases (Table 2). With βm = $500 and r = 5%, 
the average costs per CER are $0.55 and $0.71 for cv= 0.4 and 0.8 respectively, and 
increases to $0.90 and $1.15 at r=15%. 

Table 3. Results of sensitivity analysis with a project of 500 ha in size. 
 Discount rate  

Sampling 5%  15% 
cost (βm) Coefficient of variation  Coefficient of variation 

($ per plot) 0.4 0.8  0.4 0.8 
 NPV of multiple cycle ($ ha-1) 

100 5,808 5,729  574 543 
500 5,687 5,612  529 482 

1,000 5,612 5,612  494 482 
1,500 5,612 5,612  482 482 

 Optimal cycle (years) 
100 16 16  12 12 
500 16 15  12 11 

1,000 15 15  12 11 
1,500 15 15  11 11 

 Optimal no. of sample plots 
100 13 19  15 22 
500 5 0  6 0 

1,000 0 0  4 0 
1,500 0 0  0 0 

 Time-averaged CERs sold (Mg ha-1) 
100 36.7 32.7  23.0 20.7 
500 31.4 0.0  20.3 0.0 

1,000 0.0 0.0  18.0 0.0 
1,500 0.0 0.0  0.0 0.0 

 Average Cost per CER ($ Mg-1) 
100 0.89 1.03  1.43 1.66 
500 1.12 na  1.78 na 

1,000 na na  2.11 na 
1,500 na na  na na 

The final step in the sensitivity analysis consisted of repeating the complete 
optimisation analysis just described for a project half as small as the base case (500 ha 
instead of 1,000 ha). The results are presented in Table 3. The general trends follow 
the same patterns as explained above, but the NPVs are lower because the fixed costs 
make profits per hectare lower. This means that there are more cases in which it is 
optimal not to engage in carbon trading. In 9 cases out of 16 the optimal n = 0 (Table 
3) these cases are associated with high sampling costs and/or high variability. The 
smaller project size also results in higher average monitoring costs, with a range of 
$0.89 to $2.11 per CER (Table 3) compared to a range of $0.45 to $1.69 per CER 
(Table 2) with the larger project size. 
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5. DISCUSSION 

Given the assumptions of this paper it appears that carbon-credit payments will 
provide incentives for forestry projects under certain conditions. The project size, 
monitoring costs, coefficient of variation and discount rate were all shown to have 
important effects on the incentives faced by an investor contemplating the 
establishment of a plantation for timber and carbon farming.  

The results show that a 1,000 ha A. mangium plantation in South Sumatra may be able 
to claim between 15 and 38 Mg C ha-1, provided that the costs of monitoring are kept 
within reasonable limits. These included $10,000 to establish the baseline, sampling 
strategy, and project registration; plus annual fixed costs of $5,000. Variable 
monitoring costs were varied between $100 and $1,500 per plot. Some of these costs 
may be optimistic for the current situation, but it is likely that, as the right institutions 
develop and agreement is reached for simplified baseline estimation, the costs will 
decrease overtime. 

The price of carbon (pC) was assumed to be $20 (Mg C)-1 throughout the paper; this is 
equivalent to a price of $5.45 (Mg C02)-1 and is on the conservative side of estimates 
presented in the literature. Obviously, increasing pC will strengthen the incentives 
identified in this paper and decreasing pC will have the opposite effect.  

We abstracted away from the need to take stratified samples when the plantation is 
not homogeneous. This will add to the cost of monitoring but will not affect the 
general conclusions of the paper. Other simplifying assumptions included the 
omission of the baseline, soil carbon and underground biomass from the economic 
analysis. Soil carbon can be included by adding the simulation results from Fig 1 to 
the biomass estimates of Fig 2; given the small size of the former relative to the latter, 
this will have only a small effect on the results; this is discussed in more detail below. 
Underground biomass can be included by adding between 10% to 15% to the 
aboveground carbon estimate, whereas the baseline can be included by subtracting the 
carbon content of the area in the absence of the project (based on Roshetko et al. 
2002, this could be 3.0 Mg ha-1 of biomass carbon and 40 Mg ha-1 of soil carbon for 
an Imperata grassland). The simplifying assumptions of ignoring both the baseline 
and underground biomass will not significantly affect the general conclusions of this 
study because they have opposite effects on the estimate of CERs. 

It is not the total carbon stock but the change in the carbon stock relative to the 
baseline that is eligible for crediting in a LUCF activity. Our simulation results show 
that the net gain in soil carbon over the entire 40-year rotation is only 2.6 Mg C ha-1, 
which involved a mean annual increase of approximately 0.25 Mg C ha-1yr-1 for the 
first 30 years and then a decline of about 4 Mg C ha-1 over the last 10 years.  

According to Brown (2001) the consensus is that the soil-carbon stock under a LUCF 
activity must to be measured and monitored if a decrease is expected, otherwise it 
need not be included. If the expected net change in soil carbon is expected to be 
positive (with 95% confidence), then the landholder/investor would wish to include it 
in the carbon inventory (within Ct in equation 3) only if the financial benefits exceed 
the costs of measuring and certifying the carbon in the soil. Under the assumptions of 
this paper, the net change is expected to be positive but small (2.6 Mg C ha-1 over 40 
years).  
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These factors would have to be explicitly treated in designing a real forestry project, 
to obtain a more accurate estimate of CERs to be credited to the project. In this paper, 
the general assumptions are plausible and the modelling detail was kept to a level that 
provides realistic results but simplifies the exposition of the analytical procedures and 
the implication of variability, monitoring costs and discount rates on the incentives 
that investors in forestry projects will face.  

LUCF projects consisting of a large number of landholders in a particular area may 
tend to have higher cv than commercial plantations, because of geographical 
dispersion, the need to continue producing food crops, and differences in the 
management ability of different landholders. This will tend to decrease the 
attractiveness of sequestration projects based on large numbers of smallholders. 
Variable monitoring costs (βm) may also be higher for smallholder projects if they are 
geographically dispersed, because it will take longer to travel between sampling plots. 
Two other factors that may disadvantage smallholder projects may be their tendency 
to be smaller (resulting in higher average costs) and higher discount rates (resulting in 
shorter cycles and hence less CERs). 

6. CONCLUSIONS 

In this paper we show that some LUCF projects may benefit considerably from 
participating in the market for carbon offsets. Using a simulation model applied to an 
Acacia mangium plantation in South Sumatra we evaluate the magnitude of incentives 
faced by investors. Assuming that certified emission reductions (CER) are based on 
reliable minimum estimates (RME), which depend on the intensity of carbon 
monitoring, we show that between 15 and 38 Mg of CERs per hectare can be captured 
by the simulated plantation.  

The effect of four important variables on the economic incentives faced by investors 
in LUCF projects can be summarised as follows: (1) project size is positively related 
to profitability per hectare; (2) the coefficient of variation and monitoring costs are 
both negatively related to profitability, and they both decrease the amount of CERs 
that can be sold under optimal management; (3) higher discount rates decrease the 
optimal cycle length and consequently decrease the amount of CERs claimed; and (4) 
there are important interactions between all these variables in the way they affect the 
optimal cycle length and the optimal number of sampling plots.  

An important contribution of this paper is that it presents a simple methodology for 
evaluating the economic implications of project characteristics and carbon monitoring 
costs.     
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